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e X may be non-compact; requires further assumptions (e.g. convex
cocompact hyperbolic surface)

e v n SX the geodesic flow, V its generator (geodesic vector field)
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Theorem (Dyatlov and Guillarmou 2016)

The 12-resolvent R(\) = (V — \)~! continues meromorpbhically to C as a family of
operators C>°(5X) — D'(5X).
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Ruelle
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Hyperbolic

Surfaces

The 12-resolvent R(\) = (V — \)~! continues meromorpbhically to C as a family of
operators C>°(5X) — D'(S5X). The residue Ny, at A\g € C is a finite-rank operator
with well-known wavefront set.

Definition

The poles of R(\) are called the Ruelle resonances of V. The image range([y,) is
called the space of resonant states.
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Definition

Given a resonance \g we define its invariant Ruelle distribution by

Ty : C°(5X) 3 f — tr’(My,f) € C .
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Definition

Given a resonance \g we define its invariant Ruelle distribution by

Ty : C°(5X) 3 f — tr’(My,f) € C .

o if rank (MMy,) = 1 then 3 (co-)resonant states u and v such that

Tholfl = (ulflv)

@ we are looking for means of calculating 7, concretely
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We define the weighted zeta function with weight f € C*°(5X) by

exp(—=AT,)
eighted Zeta Z — T12/:1 D\ f
mnftl‘;ondsz f()\) ; <‘det (ld — P'y) | ’Y# ’
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where the sum goes over closed geodesics -y, T, denotes its period, v# its
associated primitive closed geodesic, and P, its linearized Poincaré map.




A pezson  Definition Weighted Zeta Functions

UNIVERSITY

We define the weighted zeta function with weight f € C*°(5X) by

exp(—=AT,)
eighted Zeta Z — T12/:1 D\ f
\F/\im;gtl‘;ondsz f()\) ; <‘det (ld — 737) | ’Y# ’

where the sum goes over closed geodesics -y, T, denotes its period, v# its
associated primitive closed geodesic, and P, its linearized Poincaré map.

@ generalization of dynamical determinants used to prove meromorphic
continuation of the Ruelle zeta function (Dyatlov and Zworski 2016;
Dyatlov and Guillarmou 2016)






A PADERBORN Maln ReSUIt

UNIVERSITY

Theorem (S. and T. Weich 2021)

Z¢(X) continues meromorphically to C with poles contained in the Ruelle

Weighted Zeta  asonances of V.

Functions




A PADERBORN Main ReSUIt

UNIVERSITY

Theorem (S. and T. Weich 2021)

Z¢(X) continues meromorphically to C with poles contained in the Ruelle

peighted Z¢2 - resonances of V. Given a pole \g the following holds for k > 0:

Functions

Res [Zf()\)()\—)\o)k} T ((V—)\o)"l'l,\of) .




A PADERBORN Main ReSUIt

UNIVERSITY

Theorem (S. and T. Weich 2021)

Z¢(X) continues meromorphically to C with poles contained in the Ruelle

peighted Z¢2 - resonances of V. Given a pole \g the following holds for k > 0:

Functions

Res [Zf()\)()\—)\o)k} T ((V—)\o)"l'l,\of) .

@ holds much more generally (open hyperbolic systems)



A PADERBORN Main ReSUIt

UNIVERSITY

Theorem (S. and T. Weich 2021)

Z¢(X) continues meromorphically to C with poles contained in the Ruelle

peighted Z¢2 - resonances of V. Given a pole \g the following holds for k > 0:

Functions

Res [Zf()\)()\—)\o)k} T ((V—)\O)"I'I,\Of) .

@ holds much more generally (open hyperbolic systems)

@ holds in a vector-valued version
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(1) absolute convergence on some right-halfplane Re(\) > 1
(2) (Dyatlov and Zworski 2016; Dyatlov and Guillarmou 2016) implies
WE/ (e*fOVR(A)f) ANA=0,
Sketch of the which makes the flat trace well-defined:

Proof
trb <e_t°VR()\)f> ::/ Ke*tOVR()\)f(XaX)dX
SX

(3) use (weighted) Guillemin trace formula to show that

Zr(\) = e Moy (e_tOVR()\)f>
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@ assume X to be a compact constant negative curvature surface
(compact hyperbolic surface)

o Ay its Laplacian, o(Ax) = {\;} the spectrum of Ax, Axp; = \ip;

Quantum

Phase-Space Definition
Distributions
We call the following distribution on SX the Wigner distribution associate with ¢;:

Wy, [f] == (Op(f)pi, pi)12 -
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@ quantum-classical correspondence (Dyatlov, Faure, and Guillarmou

2015):

. 1. 1 5 .
(classical resonance) — 5 +ir e~ = 4+ r° (quantum eigenvalue)

Proposition

Res
)\:f%+ir

[Z¢(M)] =

>

Qi A=+

4

<W<Pi7 f> + 0(1/)‘/) @
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@ quantum-classical correspondence (Dyatlov, Faure, and Guillarmou
2015):

. 1. 1 5 .
(classical resonance) — 5 +ir e n + r° (quantum eigenvalue)

Proposition

Quantum
Phase-Space

Distributions Rels [Zf(A)] = Z <W(p,-7 f> + 0(1/)\/) .
A=—ptir 4,0,-:/\,-:%+r2

@ holds more generally for compact locally symmetric spaces of rank one
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@ allows us to compute quantum mechanical objects in terms of
classical quantities

@ uses an exact correspondence between invariant Ruelle and so-called
Patterson-Sullivan distributions obtained by (Guillarmou, Hilgert, and
Quantum WeiCh 2021)

Phase-Space
Distributions

@ extends results by (Anantharaman and Zelditch 2007) and (Emonds
2014) beyond the hyperbolic setting and to general smooth f
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@ assume X to be an infinite area convex cocompact hyperbolic surface
(Schottky surface)

e distribution 7, lives on the three-dimensional SX

@ reduce dimension:

© push-forward 7,7y, along 7: SX = X

Mt @ restriction 7, |, to a Poincaré section ¥ C SX

=
Applications

@ use techniques adapted from (Borthwick 2014) for the actual
computations
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Figure: Invariant Ruelle distribution on a Poincaré section ¥ C SX of the unit tangent
bundle of the symmetric three-funnel surface of length 14 associated with a resonance near
the leading one.

Numerical
Applications
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Figure: Invariant Ruelle distribution of the symmetric three-funnel surface of length 14
associated with a resonance near the leading one and pushed forward along the canonical
projection SX — X.
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Further Numerical Investigations

o for more visit
https://go.upb.de/ruelle

@ we are working on an open
source project concerning
numerical calculation of
anything resonance related

@ goes public soon; your
contributions are welcomel!
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Thank you for your attention!
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Abstract

Abstract. Ruelle resonances constitute important invariants for
chaotic (hyperbolic) dynamical systems and their theory has pro-
gressed greatly in the last couple of decades. Building on the work
of Dyatlov and Guillarmou (2016) in this subject area we define
and discuss a notion of weighted zeta function for open hyperbolic
systems. First we sketch a proof of their meromorphic continuation
and the fact that their poles encode the resonances. Then we show
how their residues can be identified with so-called invariant Ruelle
distributions. On the one hand this yields a residue interpretation
of Patterson-Sullivan distributions, on the other hand this enables
their numerical calculation for example systems like geodesic flows
on Schottky surfaces and 3-disk obstacle scattering.
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