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1AG Spektralanalysis
Institute of Mathematics

Paderborn University

Microlocal and Global Analysis, Interactions with Geometry
February 21 - 25, 2022



Ruelle
Resonances on
Hyperbolic
Surfaces

Weighted Zeta
Functions

Sketch of the
Proof

Quantum
Phase-Space
Distributions

Numerical
Applications

Geometric Setup

X a closed manifold of negative sectional curvature κ < 0

X may be non-compact; requires further assumptions (e.g. convex
cocompact hyperbolic surface)

ϕt y SX the geodesic flow, V its generator (geodesic vector field)
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Definition of Ruelle Resonances

Theorem (Dyatlov and Guillarmou 2016)

The L2-resolvent R(λ) = (V − λ)−1 continues meromorphically to C as a family of
operators C∞(SX)→ D′(SX). The residue Πλ0 at λ0 ∈ C is a finite-rank operator
with well-known wavefront set.

Definition

The poles of R(λ) are called the Ruelle resonances of V . The image range(Πλ0) is
called the space of resonant states.
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Invariant Ruelle Distributions

resonant states are important in several different contexts (asymptotic
expansion, quantum-classical correspondence, ...)

Definition

Given a resonance λ0 we define its invariant Ruelle distribution by

Tλ0 : C∞(SX) 3 f 7−→ tr[(Πλ0f ) ∈ C .

if rank (Πλ0) = 1 then ∃ (co-)resonant states u and v such that

Tλ0 [f ] = 〈u|f |v〉 ,

we are looking for means of calculating Tλ0 concretely
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Definition Weighted Zeta Functions

Definition

We define the weighted zeta function with weight f ∈ C∞(SX) by

Zf (λ) =
∑
γ

(
exp(−λTγ)

|det (id− Pγ) |

∫
γ#

f

)
,

where the sum goes over closed geodesics γ, Tγ denotes its period, γ# its
associated primitive closed geodesic, and Pγ its linearized Poincaré map.

generalization of dynamical determinants used to prove meromorphic
continuation of the Ruelle zeta function (Dyatlov and Zworski 2016;
Dyatlov and Guillarmou 2016)
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Main Result

Theorem (S. and T. Weich 2021)

Zf (λ) continues meromorphically to C with poles contained in the Ruelle
resonances of V . Given a pole λ0 the following holds for k ≥ 0:

Res
λ=λ0

[
Zf (λ)(λ− λ0)k

]
= tr[

(
(V − λ0)kΠλ0f

)
.

holds much more generally (open hyperbolic systems)

holds in a vector-valued version
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Sketch of the Proof

(1) absolute convergence on some right-halfplane Re(λ)� 1

(2) (Dyatlov and Zworski 2016; Dyatlov and Guillarmou 2016) implies

WF′
(
e−t0VR(λ)f

)
∩ N∗∆ = ∅ ,

which makes the flat trace well-defined:

tr[
(
e−t0VR(λ)f

)
:=

∫
SX

Ke−t0VR(λ)f (x , x)dx

(3) use (weighted) Guillemin trace formula to show that

Zf (λ) = e−λt0tr[
(
e−t0VR(λ)f

)
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The Setting

assume X to be a compact constant negative curvature surface
(compact hyperbolic surface)

∆X its Laplacian, σ(∆X) = {λi} the spectrum of ∆X, ∆Xϕi = λiϕi

Definition

We call the following distribution on SX the Wigner distribution associate with ϕi :

Wϕi [f ] := 〈Op(f )ϕi , ϕi 〉L2 .
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New Residue Formula I

quantum-classical correspondence (Dyatlov, Faure, and Guillarmou
2015):

(classical resonance) − 1

2
+ ir !

1

4
+ r2 (quantum eigenvalue)

Proposition

Res
λ=− 1

2
+ir

[Zf (λ)] =
∑

ϕi :λi=
1
4

+r2

〈Wϕi , f 〉+O(1/λi ) .

holds more generally for compact locally symmetric spaces of rank one
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New Residue Formula II

allows us to compute quantum mechanical objects in terms of
classical quantities

uses an exact correspondence between invariant Ruelle and so-called
Patterson-Sullivan distributions obtained by (Guillarmou, Hilgert, and
Weich 2021)

extends results by (Anantharaman and Zelditch 2007) and (Emonds
2014) beyond the hyperbolic setting and to general smooth f
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The Setting

assume X to be an infinite area convex cocompact hyperbolic surface
(Schottky surface)

distribution Tλ0 lives on the three-dimensional SX

reduce dimension:

1 push-forward π∗Tλ0 along π : SX→ X

2 restriction Tλ0

∣∣
Σ

to a Poincaré section Σ ⊆ SX

use techniques adapted from (Borthwick 2014) for the actual
computations



Ruelle
Resonances on
Hyperbolic
Surfaces

Weighted Zeta
Functions

Sketch of the
Proof

Quantum
Phase-Space
Distributions

Numerical
Applications

The Setting

assume X to be an infinite area convex cocompact hyperbolic surface
(Schottky surface)

distribution Tλ0 lives on the three-dimensional SX

reduce dimension:

1 push-forward π∗Tλ0 along π : SX→ X

2 restriction Tλ0

∣∣
Σ
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Some Example Plots

Figure: Invariant Ruelle distribution on a Poincaré section Σ ⊆ SX of the unit tangent
bundle of the symmetric three-funnel surface of length 14 associated with a resonance near
the leading one.
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More Example Plots

Figure: Invariant Ruelle distribution of the symmetric three-funnel surface of length 14
associated with a resonance near the leading one and pushed forward along the canonical
projection SX→ X.
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Further Numerical Investigations

for more visit
https://go.upb.de/ruelle

we are working on an open
source project concerning
numerical calculation of
anything resonance related

goes public soon; your
contributions are welcome!
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Thank you for your attention!
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Abstract

Abstract. Ruelle resonances constitute important invariants for
chaotic (hyperbolic) dynamical systems and their theory has pro-
gressed greatly in the last couple of decades. Building on the work
of Dyatlov and Guillarmou (2016) in this subject area we define
and discuss a notion of weighted zeta function for open hyperbolic
systems. First we sketch a proof of their meromorphic continuation
and the fact that their poles encode the resonances. Then we show
how their residues can be identified with so-called invariant Ruelle
distributions. On the one hand this yields a residue interpretation
of Patterson-Sullivan distributions, on the other hand this enables
their numerical calculation for example systems like geodesic flows
on Schottky surfaces and 3-disk obstacle scattering.
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